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Abstract 

The concept of a gravitational force in General Relativity is reintroduced. The theory 
of space-like congruences is established and is applied to the discussion of the existence 
of a homogeneous gravitational force-field in curved space-time. It is shown in vacuum 
(vanishing Ricci tensor) that such a force-field cannot exist. 

1. Introduction 

A fundamental  concept  o f  Newtonian  theory is the homogeneous 
gravitational force-field. In  this paper  we want  to consider how much of  
this concept  can be brought  over into the General Theory o f  Relativity. 
However,  a central idea o f  General  Relativity is to eliminate gravitation by 
treating its effects as results o f  the space-time curvature. Consequently the 
force-field itself has first to  be reconstituted out  of  space-time concepts. 
I t  can be reintroduced by considering the effects o f  space-time curvature 
on a freely moving test particle, or  one at tached by a spring, as measured 
by an  observer. The history o f  the observer will be thereby described by a 
time-like world line and the gravitational 3-force on the test particle will 
be a space-like vector in the or thogonal  3-rest space o f  the observer. 
Essential for  the mathematical  t reatment  o f  the gravitational force-field is 
therefore the theory o f  time-like and space-like congruences. 

2. Time-like Congruences 

The world lines o f  observers form a time-like congruence with a nor-  
malised tangent  vector field u ~ (u'u, = +1). Rigid rotation,  shear and 
expansion o f  this congruence are given by (el. Ehlers & Kundt ,  1962; 
Ellis, 1971)t 

o9~ = ut~; tJ] -- ~t~ u~] 
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o'~a = u(~; ~) - -  ~(~ uB) - -  �89 haa 

0 ~ Ua~;~ 

with coo,a) = 0, o-t~B~ = 0 and a ' ,  = 0 where 

h,a = gab - u~ ua 

projects  into the 3-rest space of  an observer  with 4-velocity u ~. The  
observer ' s  acceleration is 

= u~;~ u ~ with ~ u~ = 0 (2.1) 

The  Ricci tensor  is connected to the scalar quantities rr = V'(�89 a "B) and 
o) = ~/(�89 o) "0) by (Ehlers & Kundt ,  1962; Ellis, 1971) 

R=a u = u B = 0 + �89 + 2(cr z - co 2) - a ' ; ,  (2.2) 

3. Space- l ike  Congruences 

A space-like congruence given by 

x ~ = x~(y a, s) a = 1, 2, 3 

(where the pa ramete r  a labels the par t icular  curve and s is a pa ramete r  
along the curve) has a normalised tangent  vector  field U (k~k~ = -1 ) .  The  
geometrical  propert ies  of  the congruence are measured on two-dimensional  
screens which are placed parallel along and or thogonal  to the congruence. 
The  screens are infinitesimally separated and lie in the 3-rest space of  an 
observer  u ~ 

u ~ G = 0  (3.1) 

The tensor  which projects on the 2-spaces o f  these screens is 

P,a = h,a + k ,  k a (3.2) 
with 

P~a = P a~, P ~ =  2, P~a ka = O, P ,  a ua = O, P~a P a~ = P~ ~ 

We can obtain quantities describing rotat ion,  shear and expansion o f  
the k ' -congruence  by a me thod  similar to that  used for  time-like con- 
gruences. The  vector  connecting points  with equal pa ramete r  s on the 
neighbouring curves ya and ya _}_ ~ya is 

X~ = 3x~. - a O y .  

The  relative posit ion vector  of  the two curves as measured on the screen is 

X~ = * ' 5  x ~  (3.3) 
and because of  (3.1) 

X 2 = X ~ + (X ~ k~)k" (3.4) 

The  corresponding relative 'velocity '  vector  V ~ representing the change of  
X~_ with s as observed on the screen is given by 

v" = e,~(x~)~,k, (3.5) 
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Since second partial derivatives are commutative we have 

X~;B k ~ = k~;a X a 

This enables us to write (3.5) with the use of (3.2) and (3.4) as 

v,  = v,.x  
with 

v,a = P,~Pa~k~;, (3.6) 

v~a describes the linear transformation relating the relative position and 
the relative 'velocity' of  two k'-lines with regard to the 2-screen. We split 
v~ into its antisymmetric part (9" a = Vr~aa, its trace-free symmetric part 
a~a = v ( , ~ ) -  �89 and the trace 0 " =  v~,. Then (o*~ a, o-*, B and 0* are 
describing respectively the rotation, shear and surface expansion of the 
k'-congruence on the orthogonal 2-screen in the 3-rest space of  the observer 
u ". According to (3.6) they are given explicitly as 

co*:, = �89 Pa"(k~.;: - ks;,) ] 

~P ~'P ~"k k~;~,) - � 89  (3.7) 

O* = k ' ; ,  - u ~ u a k~;a 

4. The Gravitat ional  Force  

The gravitational force on a unit mass as measured by an observer with 
the 4-velocity u" is given by the vector ~" which lies entirely in the observer's 
3-rest space (Trautman, 1964; Dehnen, 1970). This can be shown by 
discussing the relative 3-acceleration of a freely moving spin-free test 
particle with regard to an arbitrarily moving observer u ". In other words 
~ is the force which is to be applied on a particle (4-velocity v0 in order 
to prevent it from falling freely and to keep it at rest (u" = v0 relative to a 
non-geodesically moving observer u ". 

The unit vector for the gravitational force (fi~ # 0) is 

K ~ = - - ,  K 2 = -fi" z~, K >  0 (4.1) 
K 

We can describe the geometrical properties of the corresponding force 
lines by (9", a* and 0* of (3.7) in putting k ~ = K" and using (4.1) which 
then establishes a connection between the space-like and time-like con- 
gruences involved. 

5. H o m o g e n e o u s  Gravi tat ional  Force- f ie ld  

In order to make the gravitational force-field K ~ of equation (4.1) appear 
homogeneous to the observer u ", at least the following necessary  local 
conditions must be fulfilled: 

(i) The K'-force lines whose 'end points' have the 4-velocity u ~ are 
rigid, i.e., 

a~  = 0, 0 = 0 (5.1) 
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(ii) The absolute value of the force is constant, i.e., 

K;~ = 0 (K # 0) (5.2) 

(iii) The force-field shows neither expansion nor contraction along its 
lines, i.e., 

o* = 0 (5.3) 

We shall restrict our discussion of (i) to (iii) to a vacuum space-time 

R,a = 0 (5.4) 

Then (2.2) with (5.1) and (5.4) leads to 

-2co 2 = z~;, (5.5) 

and, furthermore, with (4.1) and (5.2) to 

2co z 
K ~ - (5.6) 

;~ K 
Because of (2.1) and (4.1) we have 

u" u a K.;B = K (5.7) 

and 0* of (3.7) therefore takes the form 

, 1 2 0 = -  ~(2o~ + K 2) (5.8) 

Equation (5.8) shows that (5.1), (5.2) and (5.4) lead to a non-vanishing 
and negative 0* thus indicating a contraction of the force lines in the 
direction of K% It is therefore impossible to fulfil in vacuum all three 
conditions simultaneously which are necessary for the gravitational 
force-field to be homogeneous. 
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